

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - COMPUTER APPLICAION

FIRST SEMESTER - NOVEMBER 2013
MT 1902-MATHEMATICS FOR COMPUTER APPLICATIONS

Date: 13/11/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

SECTION A

Answer ALL the questions.

1. Define Lattice homomorphism between two lattices.
2. With usual notations prove that (i) $a * a=a($ ii $) a * b=b * a$.
3. Define context free grammar.
4. For a DFA $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{0}\right\}\right)$,

Show that the string 011011 is in $L(M)$.
5. Define a Phrase - Structure grammar.
6. State the Pigeon hole principle.
7. Draw the Hasse diagram for the divisors of 32 .
8. Define a bipartite graph.
9. If G is a group then prove that $a b=a c$ implies that $b=c$ for all $a, b, c \in G$.
10. Check whether the relation " $>$ "defined on $N=\{1,2,3, \ldots\}$ is a total order relation.

SECTION B

Answer ALL the questions.
($5 \times 8=40$)
11. (a) Prove that the complement a ' of any element ' a ' of a Boolean algebra is uniquely determined. Prove also that the map $a \rightarrow a^{\prime}$ is an anti - automorphism of period ≤ 2 and $a \rightarrow a^{\prime}$ satisfies $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$, $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}, a^{\prime \prime}=a$.
(or)
(b) Discuss 'negation' and explain a method of constructing the truth table for $\mathrm{P} \vee\urcorner \mathrm{Q}$ and $(\mathrm{P} \vee \mathrm{Q}) \vee 7 \mathrm{P}$
12. (a) Write a short note on principal conjunctive normal form and construct an equivalent formulafor 7 $(\mathrm{P} \vee \mathrm{Q}) \rightleftarrows(\mathrm{P} \wedge \mathrm{Q})$.
(or)
(b) For a grammar $G=(\{S, Z, A, B\},\{a, b\}, P, S)$ where P consists of the following production:

$$
\begin{array}{lll}
\text { 1. } S \rightarrow a S A & \text { 4. } \mathrm{Z} \rightarrow \mathrm{bB} & \text { 7. } \mathrm{bB} \rightarrow \mathrm{bb} \\
\text { 2. } \mathrm{S} \rightarrow \mathrm{aZA} & \text { 5. } \mathrm{BA} \rightarrow \mathrm{AB} & 8 . \mathrm{bA} \rightarrow \mathrm{ba} \\
\text { 3. } \mathrm{Z} \rightarrow \mathrm{bZB} & \text { 6. } \mathrm{AB} \rightarrow A \mathrm{~b} & \text { 9. } \mathrm{aA} \rightarrow \mathrm{aa}
\end{array}
$$

Then show that $L(G)=\left\{a^{n} b^{m} a^{n} b^{m} / n, m \geq 1\right\}$.
13. (a) Define a Regular Expression.
(b) Explain the equivalence of deterministic finite automata and regular expressions.
(or)
(c) For a grammer $G=(V, T, P, S)$ where $V=\{S\}, T=\{a, b\}$ and $P=\{S \rightarrow a S b, S \rightarrow a b\}$, then show that $L(G)=\left\{a^{n} b^{n} / n \geq 1\right\}$.
(d) Show that the relation $\mathrm{R}=\{(a, b) / a-b=k m$ for some fixed integer m and $a, b, k \in Z\}$ is an equivalence relation.
14. (a) Show that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$.
(b) Prove that (i) $A-B=A \cap B^{\prime}$.(ii) $(A \cup B) \cup C=A \cup(B \cup C)$.
(or)
(c) If f is a mapping from X onto Y then for each subset $A \subseteq Y$, prove that $f\left(f^{-1}(A)\right)=A$.
(d) Prove that the inverse of a one to one and onto function is one to one and onto.
15. (a) Prove that there is a one- to-one correspondence between any two left cosets of H in G .
(or)
(b) (i) If G is a graph in which the degree of every vertex is atlest two, then prove that G contains a cycle.
(ii) Prove that the kernel of a homomorphism g from a $\operatorname{group}\langle G, *\rangle$ to $\langle H, \Delta\rangle$ is a subgroupof $\langle G, *\rangle$.

Section C

Answer any TWO questions. $(2 \times 20=40)$
16. (a) Let G be (p, q) graph, then prove that the following statements are equivalent:
(i) G is a tree. (ii) Every two vertices of G are joined by a unique path (iii) G is connected and $p=q+1$ (iv) G is acyclic and $p=q+1$.
(b) Let H be a subgroup of G . Then prove that any two left cosets of H in G are either identical or have no element in common.
17. (a) State and prove pumping lemma for regular sets.
(b) List any four applications of pumping lemma.
(c)(i) State the inclusion and exclusion principle.
(ii).Find the number of students at a college taking at least one of the languages French, German and Russian, given the following data: 65 study French; 20 study French and German ; 45 study German; 25 study French and Russian; 42 study Russian; 15 study German and Russian; 8 study all three languages. (10+4+6)
18. (a) Show that in a graph G, any $u-v$ walk contains $a u-v$ path.
(b) Prove that a closed walk of odd length contains a cycle.
(c) State and prove Lagrange theorem.

